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Motivation Predictive simulation of problems that span multiple scales is a grand chal-
lenge in appliedmathematics and computational science. For these problems the simplistic
approach of resolving all spatio-temporal scales has not been feasible on the present-day
petascale platforms. Norwill it be facilitated by the proposed advances to exascale comput-
ing. A point in case is the problem of simulating phase transitions and thermal transport in a
microchannel. This problem involves phenomena like cavitation, moving contact lines and
rupture of thin films, that occur atmolecular scales (10−10m and 10−14s), and others, such as
the attainment of critical heat flux, that occur at the scale of the device (10−2m and 10−2s). A
simplistic treatment of this problem in three dimensions will lead to 1024 grid points and 1012

time steps. This is the cost for a single simulation, and it is clear that even this is far beyond
the computing power of the proposed exascale platforms. However, reliable predictions
require a multitude of such simulations in order to account for the associated uncertainties.
There are several suchmultiscale problems in science and engineering like turbulence, cli-
mate modeling, etc., where a simplistic approach will not succeed. What is required is a
strategy that is based on the judicious choice of modeling at the scale that is necessary to
attain a certain predictive goal. That is, multiscale algorithms that are based on some
formof adaptive error control and uncertaintymanagement. Thiswhite paper is con-
cerned with the advances in applied mathematics that will be necessary to develop
these algorithms for the proposed exascale platforms.
AdaptiveErrorControl We interpret adaptive error control and uncertaintymanagement
in a broad context. It is applied to the:
1. Control of discretization in space and time domain within a single type of modeling ap-

proach (continuum, mesoscale, atomistic, quantum etc.).
2. Control of multiscale coupling strategy. Whether one selects a simple sequential ap-

proach or a more accurate, but expensive, concurrent approach.
3. Control of the extent of space-time coupling domains within a concurrent strategy.
4. Control of discretization in stochastic space.
5. Selection of models driven by evidence and plausibility.
Exascale Challenges While the precise architecture of a typical exascale platform is still
a matter of research, it is becoming clear that it will involve hybrid computing strategies,
deep memory hierarchies, a premium on the power consumed for a calculation and move-
ment of data, and algorithms that are fault tolerant. It is therefore important to determine
what advances are required to achieve these targets in an adaptive multiscale simulation.
A brief, and by no means exhaustive, list is presented below:

1. The execution of adaptivemutliscale computations on exascale computersmust first ad-
dress the fact that we need to define the mathematical infrastructure for defining scale
linking techniques and discretization errors associated with them. We must then con-
sider the algorithms for their implementation on exascale computers thatminimize the
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movement of data on machines with very limited memory per compute resource. On a
broader level, the mathematical framework of mutliscale adaptation, and the algorithms
that implement it, must account for the characteristics of exascale computers. For ex-
ample, on current systems the effective use of accelerators requires the movement of
the data into the specific memory infrastructure of the accelerator. This places a large
penalty on adaptive methods that would execute adaptive control on a CPU and then
move the data for computation to an accelerator. However, if advances in “moving the
computation to the data” become a reality in some effective form, this penalty may be
eliminated or drastically reduced. Clearly the forms of adaptive multiscale control that
will be most effective will be different in the two cases and, in the second case, be a
function of how the “computation is moved to the data”.

2. Fast and efficient dynamic load balancing is an essential part of the implementation
of the adaptive multiscale algorithms. Although it is simple to state that the goal of the
dynamic load balancing process is tominimize the power requirements, the goal is in fact
a dynamic multi-objective, multi-parameter optimization problem. The objectives must
account for the amount of memory used, amount of data movement through a hetero-
geneous hierarchy, and the execution of computations on heterogeneous processing
units; all of which account for constraints such as completion of the entire simulation in a
acceptable wall clock time. The dynamic load balancing algorithmsmust be able tomap
theset of parameters that characterize theparallel computer tomethods that arecharged
with loadbalancingheterogeneous calculations (e.g., atomistics andmesh-basedPDE).
In addition, since the adaptive control processes and dynamic load-balancing will be ex-
ecuted on a regular basis, their “cost” must be accounted for when deciding when to
adapt, how to adapt, and how to dynamically load balance.

3. In the context of multi-level algorithms one way of achieving fault tolerance involves
separating the overall algorithm into inner and outer algorithms. The outer algorithm is
designed so that it can accommodate faults in the inner algorithm, and it is assumed that
the outer algorithm will be, relatively speaking, fault-free. This leads to an efficient strat-
egy since most of the computational effort in these algorithms is expended in the inner
iterationswhich canbeperformedusing compute cycles that are not robust. Amultiscale
algorithm naturally provides this inner/outer framework. The challenge then is to re-cast
typical multiscale algorithms into this framework while in the process ensuring that the
structure of the outer loop is reliable with respect to faults at all levels (including its own).

4. Uncertainty quantification leads to matrices with dense block structure and sparse sub-
blocks, or sparse block structurewith dense sub-blocks. This choice opens up the possi-
bility of mapping data storage to the hierarchic memory storage on exascale computers
with the goal ofminimizing communication.
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